Header design

From Crankshaft Coalition Wiki
Jump to: navigation, search
(Primary tube length)
(Argument for larger collectors)
 
Line 1: Line 1:
{{newarticle}}
+
{{youcanedit}}
 +
==Introduction==
 
To some, a header is just a bunch of tubes that connect the exhaust port to the rest of the exhaust system. To the more mechanically curious, it is a system of tuned length and diameter tubes connecting to a device which amplifies and optimizes the wavelength of the exhaust, effectively sucking burnt gases out of the engine's cylinders.
 
To some, a header is just a bunch of tubes that connect the exhaust port to the rest of the exhaust system. To the more mechanically curious, it is a system of tuned length and diameter tubes connecting to a device which amplifies and optimizes the wavelength of the exhaust, effectively sucking burnt gases out of the engine's cylinders.
  
 
In the street rod world, absolute mechanical efficiency often takes a back seat to appearance, clearance issues, and ease of installation. However, most of us overlook the benefits of a properly designed and built header and how it can improve drivability, power output and fuel economy. If you are building headers or modifying existing headers, why not try to keep the physical operation of a header in mind while working on it?
 
In the street rod world, absolute mechanical efficiency often takes a back seat to appearance, clearance issues, and ease of installation. However, most of us overlook the benefits of a properly designed and built header and how it can improve drivability, power output and fuel economy. If you are building headers or modifying existing headers, why not try to keep the physical operation of a header in mind while working on it?
  
==A bigger header isn't necessarily a better header==
+
==Collector size==
The two most important aspects of header design are tubing diameter and primary tube length. This is definitely one area where the "Bigger is Better" philosophy doesn't cut it. Most very mild small blocks out there would perform better with 1 1/2" primary tube headers on them. Ever try to find primary tubes that small?
+
===Argument for smaller collectors===
 +
Ever see a car header with 1 5/8" primaries that had a 2 1/2" collector? Hooker makes them for trucks, but you don't see them for cars. But that is the optimum diameter for many street headers. Run that right into a 2 1/2" exhaust and you have a sweet system with lots of torque where you need it, and better fuel economy to boot. The collector should have a smooth, gentle shape from the four tube area down to the final diameter to keep things moving smoothly.
  
===Tubing diameter===
+
If you have very healthy big block, are running a blower, turbo, or nitrous, a 3" header may be appropriate. However, about the only street application of the monster 3" diameter pipe is when you count on having an engine with a lot of top-end power. Otherwise, velocity is king in exhaust and 3" is probably too big to keep the speed of the gases up in the exhaust, and there goes that bottom end torque again! Many recommend either 2-1/4" or 2-1/2" diameter pipe for street V-8's.
Just like putting a 300 degree duration cam in a 350 inch small block with 8:1 compression will kill any drivability and torque (but the idle sounds neat - until you hear a high compression big cam motor), putting a set of 1 3/4" headers on a mild small block will kill torque and drivablility, not to mention fuel economy.  
+
  
What horsepower does your engine ''REALLY'' make? Most people overestimate horsepower, RPM range, etc. of the motor in their ride. Consider that the GM ZZ4 crate motor makes 355 hp and the Mopar Performance 5.7 Hemi crate motor makes 360 horsepower with great heads (as for the Hemi, excellent heads), roller cams and brand new everything. How much power is your 350 with 50,000 miles, stock iron heads, 268 degree cam and 8:1 compression going to make? The two engines mentioned above would be ideal candidates for headers with 1 5/8" primary tube headers at 36" long with a 2 1/2" collector and exhaust system.
+
===Argument for larger collectors===
 +
A larger-than-needed exhaust system won't necessarily "kill" your low end torque. Any engine that makes respectable low end power will continue to make low end power regardless of a sewer pipe sized exhaust. SOME power may be lost, yes. Usually not enough to make a difference on MOST V8 engines that are even close to being tuned right. Even a stock big block can make complete use of a 3" single exhaust system. Some even come with that size STOCK.
  
===Primary tube length===
+
The majority of torque "lost" from the bottom end of the power band has actually been moved upwards in the powerband, into the midrange. This can help performance during highway driving and towing, and may provide better passing power when needed. A more powerful midrange tends to make the low end seem less powerful, simply because the engine pulls better in a different part of the RPM range. Most people that think they lost low end power are simply noticing that the engine pulls better in a different way, even if NO low end power was ever lost.
That brings us to primary length. First of all, those "shortie" headers are not headers, just tubing manifolds designed for clearance -- not horsepower or torque. Although they look like they would flow better than manifolds (and probably do in many instances), unless you are running a supercharger, you need more than flow out of a header. The bothersome part of the "shortie" (other than length) is that the collector is so short and causes a lot of turbulence right where the flow needs to be smoothed out.
+
  
Exhaust headers (and intake runners for that matter) can be tuned to length to give a power boost at a given RPM. Tuned length is a function of the speed at which the boost is desired and has nothing to do with diameter of the tubes. When the exhaust valve cracks open, there is a strong pressure pulse sent down the tube at the speed of sound in the high temperature gas. When this pressure wave reaches a larger diameter such as in a header collecter, there is a low pressure (slight vacuum) wave reflected back up the pipe at the speed of sound. The goal is to have this low pressure wave reach the exhaust valve just as it closes which scavenges the cylinder causign a better charge of clean air and fuel. Since it is a function of fixed velocity of sound in the exhaust gas, the slower the desired tuned speed, the longer the pipe needs to be. Interestingly, the shape of the pipe (turns) isn't critical so a basket of snakes header is just as effective as straight tubes. The diameter of the tube should be as small as possible which strengthens the magnitude of the pressure pulses. Velocity of the gas really has nothing to do with the tuned speed available in header design but is a negative when it comes to friction losses.  
+
==180 degree exhaust system==
 +
One thing that has not been discussed is the unequal firing order from one bank to the other. One college research paper on a Jaguar racing engine having a 105% volumetric efficiency, the torque peaks vs rpm looked like the Grand Tetons.  
  
The main advantage gained in equal length, independent primary header tubes is from the strong negative pressure pulse that is reflected from the tube end when the strong positive pressure pulse form the exhaust valve reaches the collector. Other pulses from other header tubes are of much smaller magnitude in the tube of interest and can be ignored. Thus tuning length is very easy to determine once you have an estimate of the speed of sound in the hot gasses. A useful equation is
+
The 1963 Ford Indy engine had the "bundle of snakes" exhaust system on the top with pipes crossing over to have 4 equally spaced exhaust charges in each exhaust header, some race car headers had pipes crossing under the trans to get equal charging in each header. This system is called a 180 degree exhaust. It has some advantages in racing situations, but for the most part it's a very difficult and costly system to manufacture, package and install/service in a production vehicle.
  
L = (120*V)/N
+
==Gaskets==
 +
There are many different types and sizes of header gaskets on the market today. Composite are common, as is fiber types. The composite gaskets seem to hold up a little better, all else being equal, but the main thing is to retighten the header bolts often- like every time the engine is heat cycled- until the fasteners take a set.
  
where
+
[[File:Foil exh gasket sbc1.jpg]]
  
L is the pipe length, less port length in head, in inches;
+
{{!}}Remember- keeping the bolts tight is very important to keeping the gaskets from burning out.
  
V is the velocity of sound in hot gasses, in feet per second (ft/sec). Values of 1300 ft/sec to 1700 ft/sec are common;
+
For the SBC and any other engine that uses these gaskets as a stock replacement: If/when the gaskets take a dump, try a set of the foil backed composite gaskets that come in most rebuild gasket sets. If they'll fit the head and header ports, they will work as good as most any more expensive composite gasket if the bolts are kept tight.
  
and,
+
Regardless of what gasket that is used, trim the ID to fit the largest port, be it the header or the head port so there's no overhang into the port. After trimming, start all the bolts and just drop the gaskets into place. Other header gaskets can have the bolt holes slotted in the same way as the foil backed gaskets shown above, for easier installation.
  
N is the engine rotational speed, in rotations per minute (rpm).
+
==See also==
 
+
*Wikipedia article on [http://en.wikipedia.org/wiki/Manifold_%28automotive_engineering%29 exhaust manifolds]
Using V = 1700 ft/sec the equations simplifies to
+
*[[Headers]]
 
+
* http://www.wallaceracing.com/header_length.php
L = 204,000/N.
+
 
+
There have been various permutations on this basic design like tri-Y headers, stepped tubing size, etc. Each takes advantage of modifying the pressure pulse arrival time at the instant the exhaust valve closes to achieve a scavenging/ higher volumetric efficiency/ more torque result. The good is that you can achieve a very significant torque increase at the design rpm. The bad is that you likely will also achieve less torque at other RPMs.
+
 
+
There are other design theories like the Helmholtz resonator which are useful in designing systems with more than one degree of freedom than a single pipe/cylinder, i.e., Tri-Y.
+
 
+
As you can see from this discussion, most popular aftermarket headers are poorly designed for any performance purpose. Tubes are too short, too big, and all different lengths. Most "street rod" headers are not designed for performance, rather to fit insde the typical smoothie envelope. "Performance" headers are desinged to look zoomie I guess because I can't figure out any other design criteria when I study them.
+
 
+
Incidentally, this is the principle that Chrysler used on the cross ram intake manifolds they put on big block passenger car engines in the late 50s. The velocity of sound in the cold intake gasses is much slower than that in hot exhaust so tuned length for a street intake is much shorter @ about 18" from the valve seat to the plenum. Thus they put a 4bbl carb on either side of the engine and crossed over long ports. Looked and performed great!
+
 
+
====Equal primary tube length====
+
=====Argument for equal primary tube lengths=====
+
If the length of the primary is part of the tuning equation, how well does an engine run with different primary tube lengths? Try and jet that carburetor without pulling your hair out! Most of the commercially available headers out there have a large variance in tube length. Check out a set for a big block mopar in a B or E body for an example. The variance between longest and shortest tubes on these units can be as much as 16".
+
 
+
[[Image:unequal.jpg|right|frame|Big block Chevy headers. Note how the driver's side rear tube (yellow) must be about 10"-12" shorter than the next tube (in red).]]
+
 
+
In the header photograph to the right, the short primary tube would scavenge at a higher RPM and the long primary tube would scavenge at a lower RPM for the respective cylinder. Therefore the cylinder with the short tube will be running lean at low RPM and the long tube cylinder will be running lean at the high RPM and would require different jetting and timing than the others. How do you do that with a standard kettering distributor and a simple carburetor? That's why equal length is important: so you can tune your car. Not only do equal length tubes make the engine tuneable, but make more torque in the RPM range for which they were intended.
+
 
+
=====Argument against equal primary tube lengths=====
+
Equal length headers are good for a certain part of the RPM range of a typical engine. However, when buying an equal length header you are left with the length the manufacturer wanted to use, NOT the correct length for the engine you are building. How do you know if its the right length?
+
 
+
Different primary tube lengths are not nearly as hard to tune. This type of header shown has proven itself for decades to be a well designed, good flowing header that will free up a good amount of horsepower compared to stock manifolds.
+
 
+
"Equal length" is usually defined as the longest and shortest tubes being within 2 inches of each other (about as close as you can measure with a tape measure at the swap meet).
+
 
+
There have been claims by some manufacturers that unequal lengths broaden the torque curve due to different cylinders performing better at different RPM. It is left to the reader to decide if flattening the torque curve is a good thing to be doing with headers. However, a flat broad torque curve makes better drivability, and a smoother power band than a peaky engine.
+
 
+
How does one unequal length tube make for a broader power band? This sounds like someone trying to explain away poor design. So does a 180 degree intake manifold have just one shorter smaller runner?
+
 
+
==Collector==
+
===Argument for smaller collectors===
+
Ever see a car header with 1 5/8" primaries that had a 2 1/2" collector? Hooker makes them for trucks, but you don't see them for cars. But that is the optimum diameter for many street headers. Run that right into a 2 1/2" exhaust and you have a sweet system with lots of torque where you need it, and better fuel economy to boot. The collector should have a smooth, gentle shape from the four tube area down to the final diameter to keep things moving smoothly.
+
 
+
If you have very healthy big block, are running a blower, some turbo, or have a ton of nitrous, a 3" header may be appropriate. However, about the only street application of the monster 3" diameter pipe is when you count on having an engine with large gobs of top-end power. Otherwise, velocity is king in exhaust and 3" is probably too big to keep the speed of the gases up in the exhaust, and there goes that bottom end torque again! Many recommend either 2 1/4" or 2 1/2" diameter pipe for street V-8's.
+
 
+
===Argument for larger collectors===
+
A larger than needed exhaust won't necessarily "kill" your low end torque. Any respectable engine that makes low end power will continue to make low end power regardless of the sewer pipe exhaust. SOME power may be lost, yes. Usually not enough to make a difference on MOST V8 engines that are even close to being tuned right. Even a stock big block can make complete use of a 3" single exhaust system. Some even come with that size STOCK.
+
 
+
The majority of "lost" torque is now in the midrange of the engine's powerband. This will help with highway driving and towing, and provide better passing power when needed. This more powerful midrange will always make the low end seem less powerful, simply because the engine pulls better in a different part of the RPM range. Most people that "think" they lost low end power are simply noticing that the engine pulls better in a different way, even if NO low end power was ever lost.
+
 
+
==Summary of header design principles==
+
#A "shortie" or a "block hugger" flows better than a stock manifold, and helps to produce more power than stock. However, it is not technically considered a header. They are easier to install in a stock style exhaust system, which makes them attractive.
+
#Bigger diameter primary tubes are NOT better in most street applications.
+
#The torque/power boost available from a header will occur at a specific RPM that can be easily determined.  The price paid for this boost is likely lower power at other RPMs.  All engine design is compromise.
+
#Equal primary tube length is very important for tuning and power output, but not to the point of obsessing over it. A regular Tri Y or 4-1 header will work wonders over the stock manifolds.
+
#A long and smooth collector is a good thing.
+
#Just like header tube size, be reasonable with the size of your exhaust system.
+
One thing that has not been discussed is the unequal firing order from one bank to the other.  I did an research paper  on Exhaust tuning when I was in college, A Jaguar racing engine had %105 volumetric efficiency,,, the torque peaks vs rpm  looked like the grand teton mountains  Start with a sheet of graph paper and draw the engine in plan view then draw a line 8 blocks long from cylinder no 1 . a line 7 blocks from cylinder firing next.... 6 blocks from the cylinder that fired third  etc  and so on following the firing order. .  You will see the lines are not uniformly distributed ,  the ford 63 indy engine had the "bundle of snakes" exhaust system on the top with pipes crossing over to have 4 equally spaced exhaust charges in each exhaust header,  some race car headers had pipes crossing under the trans to get equal charging in each header ==See also==
+
[http://en.wikipedia.org/wiki/Manifold_%28automotive_engineering%29 Wikipedia article on exhaust manifolds]
+
  
 
[[Category:Engine]]
 
[[Category:Engine]]
{{youcanedit}}
+
[[Category:Exhaust]]
 +
[[Category:Undeveloped articles]]
 +
[[Category:Undeveloped Engine articles]]
 +
[[Category:Undeveloped Exhaust articles]]

Latest revision as of 15:46, 5 May 2022

Personal tools
Namespaces
Variants
Actions
Navigation
Categories
Toolbox