Head gasket

From Crankshaft Coalition Wiki
Jump to: navigation, search
m (Head gasket torquing)
(Chevy R07 vs. LSx head gaskets)
 
Line 1: Line 1:
{{youcanedit}}
+
, and can be detected with certain techniques. Left unfixed, a blown head gasket could cause severe engine damage. Many symptoms of a bad head gasket are not apparent until the problem is very bad, including the ones listed later in this article.  
==Overview==
+
The '''cylinder head gasket''' provides the critical seal between the engine block and the cylinder head. They seal the combustion in the combustion chambers and keep coolant contained to the cooling ports in the heads and block.
+
 
+
Blown head gaskets can be caused by various engine problems, and can be detected with certain techniques. Left unfixed, a blown head gasket could cause severe engine damage. Many symptoms of a bad head gasket are not apparent until the problem is very bad, including the ones listed later in this article.  
+
  
 
Various different types of head gaskets exist today, for different applications. Care must be taken in removal of the old gasket, selection of a new gasket and proper installation of the new gasket.  
 
Various different types of head gaskets exist today, for different applications. Care must be taken in removal of the old gasket, selection of a new gasket and proper installation of the new gasket.  
Line 49: Line 45:
  
 
====Graphite head gasket====
 
====Graphite head gasket====
Graphite head gaskets can be used on aluminum heads with an iron block (they work equally well with iron heads on an iron block). Graphite is excellent in handling high temperatures and is anisotropic (draws heat away from hot spots). It also seals very well too. Some drawbacks to using graphite is that it cannot withstand exposure to oil over a over a long period of time, can be crushed and extruded, and it also leaves a coating on the block and heads that is harder to remove than traditional head gaskets.
+
Graphite head gaskets can be used on aluminum heads with an iron block (they work equally well with iron heads on an iron block). Graphite is excellent in handling high temperatures and is anisotropic (draws heat away from hot spots). It also seals very well too. Some drawbacks to using graphite is that it cannot withstand exposure to oil over a long period of time, can be crushed and extruded, and it also leaves a coating on the block and heads that is harder to remove than traditional head gaskets.
  
 
An article that mentions graphite gasket technology is '''[http://www.enginebuildermag.com/Article/2585/gasket_technology_the_science_of_sealing.aspx here]'''.
 
An article that mentions graphite gasket technology is '''[http://www.enginebuildermag.com/Article/2585/gasket_technology_the_science_of_sealing.aspx here]'''.
Line 187: Line 183:
 
*Retracing the original torque pattern one fastener at a time, slightly loosen the bolt or nut (to overcome the friction set), then re-torque to the specified torque setting
 
*Retracing the original torque pattern one fastener at a time, slightly loosen the bolt or nut (to overcome the friction set), then re-torque to the specified torque setting
  
{{!}}It is suggested by some to retorque cast iron heads/blocks while still warm (not hot). Whether or not this is done when using iron castings (research this beforehand) is up to the builder. But this should NOT be done with aluminum blocks or heads.
+
{{!}}It is suggested by some to retorque cast iron heads/blocks while still warm (not hot). Whether or not to do this when using iron castings is up to the builder (''research this beforehand''). But this should NOT be done with aluminum blocks or heads.
  
 
===When replacing a blown head gasket===
 
===When replacing a blown head gasket===
Line 286: Line 282:
 
==References==
 
==References==
 
===Compression calculators===
 
===Compression calculators===
 +
====Static CR====
 
*[http://www.wheelspin.net/calc/calc2.html Static compression ratio]
 
*[http://www.wheelspin.net/calc/calc2.html Static compression ratio]
*[http://www.empirenet.com/pkelley2/DynamicCR.html Dynamic compression calculator] by Kelly
+
 
*[http://www.kb-silvolite.com/calc.php?action=comp2 Dynamic compression calculator] by KB
+
====Dynamic CR====
 +
*[http://www.wallaceracing.com/dynamic-cr.php Wallace Racing DCR calculator]
 +
*[http://www.empirenet.com/pkelley2/DynamicCR.html Kelly DCR calculator]
 +
*[http://www.uempistons.com/calc.php?action=comp2 KB/Silvolite DCR calculator]
 +
*[http://www.rbracing-rsr.com/comprAdvHD.htm RSR DCR calculator]
 +
{{Note1}} Some dynamic compression rtatio calculators (like KBs) ask for an additional 15 degrees of duration be added to the IVC @ 0.050" lift point figure. This works OK on older, slower ramped cam lobes, but the faster lobe profiles may need to have 25 degrees or more added to be accurate.
 +
 
 +
{{Note1}}If the intake valve closing (IVC) point isn't known, it can be calculated:
 +
# Divide the intake duration by 2
 +
# Add the results to the lobe separation angle (LSA)
 +
# Subtract any ground-in advance
 +
# Subtract 180
 +
This result does not need to have any amount added to the IVC point, like the KB calculator calls for.
  
 
===Forum discussions===
 
===Forum discussions===
Line 326: Line 335:
 
[[Category:Engine]]
 
[[Category:Engine]]
 
[[Category:Good articles]]
 
[[Category:Good articles]]
{{Develop1}}
 
 
[[Category:Cylinder head]]
 
[[Category:Cylinder head]]

Latest revision as of 13:48, 7 September 2023

Personal tools
Namespaces
Variants
Actions
Navigation
Categories
Toolbox