Bulletproof cooling system

Jump to: navigation, search
m (thanks for the thoughts)
m
Line 26: Line 26:
  
 
==Bulletproof cooling system tips==
 
==Bulletproof cooling system tips==
*Clogging and leaks are two of the most common radiator problems. Bugs, dirt, and debris can block airflow, and limit the radiator's heat-dissipating characteristics. Thus, it's recommended to "backflush" the radiator and cooling system when changing coolant. This helps to clean out deposits, and flushes the remaining coolant from the engine block. You can backflush the radiator by running water through it in the opposite direction of regular flow. Typically, after draining the radiator, a t-fitting can be installed in the heater inlet hose. This fitting gets connected to a pressurized water hose, and the system is reverse flushed. Do this until clean water emerges.
+
*Clogging and leaks are two of the most common radiator problems. Bugs, dirt, and debris can block airflow, and limit the radiator's heat-dissipating characteristics. Thus, it's recommended to "back flush" the radiator and cooling system when changing coolant. This helps to clean out deposits, and flushes the remaining coolant from the engine block. You can back flush the radiator by running water through it in the opposite direction of regular flow. Typically, after draining the radiator, a t-fitting can be installed in the heater inlet hose. This fitting gets connected to a pressurized water hose, and the system is reverse flushed. Do this until clean water emerges.
 
*You should use a radiator at least as large as the one that was originally used to cool the engine (not the car) from the factory, and with the same or more radiator cores. However, it's important to note that additional rows of radiators don't add a proportional amount of cooling: a 3-row radiator does not offer 50% more cooling than a 2-row. This is because subsequent rows receive warm air from the rows in front of them. However, adding radiator frontal area IS proportional, but this usually causes fitment issues, so additional rows are generally the only viable choice.
 
*You should use a radiator at least as large as the one that was originally used to cool the engine (not the car) from the factory, and with the same or more radiator cores. However, it's important to note that additional rows of radiators don't add a proportional amount of cooling: a 3-row radiator does not offer 50% more cooling than a 2-row. This is because subsequent rows receive warm air from the rows in front of them. However, adding radiator frontal area IS proportional, but this usually causes fitment issues, so additional rows are generally the only viable choice.
 
*Oftentimes, the cheapest and most bulletproof way is to use the largest radiator that will fit, along with the shroud that was designed for the radiator from the factory and the designated steel fan and viscous drive assembly for same. ''(confirm and expand)''
 
*Oftentimes, the cheapest and most bulletproof way is to use the largest radiator that will fit, along with the shroud that was designed for the radiator from the factory and the designated steel fan and viscous drive assembly for same. ''(confirm and expand)''
Line 33: Line 33:
 
*Thermostatically controlled fan clutch.
 
*Thermostatically controlled fan clutch.
 
*Water pump and crankshaft pulleys sized according to what was on the engine from the factory. On a street motor, shoot for 1.2 to 1.3 times crank speed for pump pulley speed. This is usually true until you get to 3.55 gears and numerically higher, then 1 to 1 works better. Most all 1960's muscle cars are 1 to 1. Pump speeds over 4200 sustained cause cavitation. Nascar is a good example with roughly 3.5" crank pulleys and 8" waterpump pulleys for their 9200 rpm engines''(confirm)''
 
*Water pump and crankshaft pulleys sized according to what was on the engine from the factory. On a street motor, shoot for 1.2 to 1.3 times crank speed for pump pulley speed. This is usually true until you get to 3.55 gears and numerically higher, then 1 to 1 works better. Most all 1960's muscle cars are 1 to 1. Pump speeds over 4200 sustained cause cavitation. Nascar is a good example with roughly 3.5" crank pulleys and 8" waterpump pulleys for their 9200 rpm engines''(confirm)''
*On a carbureted motor, most of us use a 180 degree thermostat, although a little hotter thermostat (190-195) may make the motor more responsive and add a little fuel mileage. It may also help to burn off some of the by-products of operation, such as moisture and acids which form and get into the oil. Motors using EFI induction should be operated at the temperature specified by the factory for that particular motor to prevent false input to the computer and consequent problems. ''(confirm and expand)'' The sensor pill goes toward the motor.
+
*On a carburetor equipped engine, most of us use a 180 degree thermostat, although a little hotter thermostat (190-195) may make the motor more responsive and add a little fuel mileage. It may also help to burn off some of the by-products of operation, such as moisture and acids which form and get into the oil. Motors using EFI induction should be operated at the temperature specified by the factory for that particular motor to prevent false input to the computer and consequent problems. ''(confirm and expand)'' The sensor pill goes toward the motor.
 
*Use a spiral-wound spring in the bottom radiator hose, to prevent collapse of the hose.
 
*Use a spiral-wound spring in the bottom radiator hose, to prevent collapse of the hose.
 
*Use the proper pressure cap for the radiator being used.
 
*Use the proper pressure cap for the radiator being used.
Line 46: Line 46:
  
 
===Recommended donor vehicles===
 
===Recommended donor vehicles===
 +
 
*'76 Cadillac Fleetwood or Eldorado. For example: [http://www.radiatorexpress.com/product.asp?part=1976+CADILLAC+FLEETWOOD++%2D+8%2E2+liter+V8+RADIATOR+Name+Brand+Replacement&part_id=1357&aaia_id=1026582 1976 Cadillac Fleetwood 8.2 liter V8 radiator].
 
*'76 Cadillac Fleetwood or Eldorado. For example: [http://www.radiatorexpress.com/product.asp?part=1976+CADILLAC+FLEETWOOD++%2D+8%2E2+liter+V8+RADIATOR+Name+Brand+Replacement&part_id=1357&aaia_id=1026582 1976 Cadillac Fleetwood 8.2 liter V8 radiator].
 +
 
*Mid-70's Chevrolet truck with a 454. For example: [http://www.radiatorexpress.com/product.asp?part=1975+CHEVROLET+C20+PICKUP++%2D+7%2E4+liter+V8+RADIATOR+Name+Brand+4%2DRow+Capacity+Upgrade+%2828%22x19%22%29&part_id=39583&aaia_id=1031971 1975 Chevrolet C20 Pickup - 7.4 liter V8 radiator, 4-row capacity upgrade] (and, same radiator in aluminum: [http://www.radiatorexpress.com/product.asp?part=1975+CHEVROLET+C20+PICKUP++%2D+7%2E4+liter+V8+RADIATOR+All+Aluminum+4%2DRow+Capacity+%2828%22X19%22%29&part_id=218171&aaia_id=1031971 here]).
 
*Mid-70's Chevrolet truck with a 454. For example: [http://www.radiatorexpress.com/product.asp?part=1975+CHEVROLET+C20+PICKUP++%2D+7%2E4+liter+V8+RADIATOR+Name+Brand+4%2DRow+Capacity+Upgrade+%2828%22x19%22%29&part_id=39583&aaia_id=1031971 1975 Chevrolet C20 Pickup - 7.4 liter V8 radiator, 4-row capacity upgrade] (and, same radiator in aluminum: [http://www.radiatorexpress.com/product.asp?part=1975+CHEVROLET+C20+PICKUP++%2D+7%2E4+liter+V8+RADIATOR+All+Aluminum+4%2DRow+Capacity+%2828%22X19%22%29&part_id=218171&aaia_id=1031971 here]).
  
Line 65: Line 67:
  
 
==Directing air flow==
 
==Directing air flow==
 +
 
Moving the air through the radiator is one of the most important points of engine cooling and heat dispersal. In order for cooling to take place, the air MUST move through the radiator fins, and, by way of convection, the cooler air will remove the heat from the engine coolant to the outside air flow. For this to happen, the frontal area of the vehicle must be clear and the entering air must not be blocked. The radiator fins must be clean, clear and unblocked by mechanical damage, i.e. folded over fins, plugged by bugs and dirt. The air must pass THROUGH the radiator, NOT OVER OR AROUND IT. Seal up hood-to-radiator cradle air spaces with sheet metal or rubber sheeting. The fan shroud should contain at least 90% of the fan blade circumferentially and the edges should be sealed to the contours of the radiator for maximum suction by the fan.  Hot exhausted air should have an escape route out of the engine compartment. If it doesn't, make louvers or outside air scoops. Direct air to pass over the engine and exhaust manifolds or headers and out the bottom and sides away from the passenger compartment. Don't remove the rubber skirts from the inner wheel wells over the suspension, they are there for a reason.
 
Moving the air through the radiator is one of the most important points of engine cooling and heat dispersal. In order for cooling to take place, the air MUST move through the radiator fins, and, by way of convection, the cooler air will remove the heat from the engine coolant to the outside air flow. For this to happen, the frontal area of the vehicle must be clear and the entering air must not be blocked. The radiator fins must be clean, clear and unblocked by mechanical damage, i.e. folded over fins, plugged by bugs and dirt. The air must pass THROUGH the radiator, NOT OVER OR AROUND IT. Seal up hood-to-radiator cradle air spaces with sheet metal or rubber sheeting. The fan shroud should contain at least 90% of the fan blade circumferentially and the edges should be sealed to the contours of the radiator for maximum suction by the fan.  Hot exhausted air should have an escape route out of the engine compartment. If it doesn't, make louvers or outside air scoops. Direct air to pass over the engine and exhaust manifolds or headers and out the bottom and sides away from the passenger compartment. Don't remove the rubber skirts from the inner wheel wells over the suspension, they are there for a reason.
  
Line 76: Line 79:
  
 
==Water pumps: electric vs. mechanical==
 
==Water pumps: electric vs. mechanical==
 +
 
Electric water pumps are constant flow pumps that push X amount of gals of water per minute, no matter what the rpm of the engine is.  
 
Electric water pumps are constant flow pumps that push X amount of gals of water per minute, no matter what the rpm of the engine is.  
  
Line 82: Line 86:
 
On a SBC for instance, the coolant flow of the OEM mechanical water pump is around 10-12 gall./min. per 1000 RPM.
 
On a SBC for instance, the coolant flow of the OEM mechanical water pump is around 10-12 gall./min. per 1000 RPM.
  
The "usual" drive ratio of a SBC mechanical water pump is between 1:1 and 1.3:1, overdriven.
+
The "usual" drive ratio of a SBC mechanical water pump is between 1:1 and 1.3:1, over driven.
  
 
==Serpentine cross-flow radiators==
 
==Serpentine cross-flow radiators==

Revision as of 14:56, 7 August 2010

Personal tools
Namespaces
Variants
Actions
Navigation
Categories
Toolbox