AMC V-8s

Jump to: navigation, search
m (The Packard connection leading to the Gen 1 production AMC V8)
(Minor clean up)
Line 17: Line 17:
 
18 months from drawing board to production doesn't sound all that short today, but in the era of slide rules and drafting boards (no computer modeling or even calculators!) it was phenomenal. One of the ways the AMC Engineering Department worked this miracle was to hire David Potter from Kaiser-Frazer. He had previously worked with Continental Engines (owned by Kaiser Industries) on a V-8 intended for the Kaiser-Frazer line, however Kaiser had since purchased Willys-Overland resulting in a change of it's priorities; from making cars, to making the more popular Jeeps. AMC literature reports that "The entire program was under the direction of Meade F. Moore, Vice-President of Automotive Research and Engineering, and through his efforts the project was carried on cooperatively by our Kenosha and Detroit Engineering Departments. Obviously, such a division of both design and development required the utmost in teamwork by F. F. Kishline, Chief Engineer, and his assistants, E. L. Monson and J. S. Voigt in Kenosha, and by R. H. Isbrandt, Chief Design Engineer, and W. S. Berry, Chief Mechanical Engineer, in Detroit." AMC concluded in their announcement of the new engine saying "In short, our objective was an engine with maximum flexibility with regard to future displacement requirements without sacrificing any of the performance features of the power-plant. Economy of operation and manufacturing processes, along with excellent weight and durability characteristics, were all part of our aims. We think that we have succeeded in reaching these objectives, and have produced an engine that is second to none. It is an engine of which we are justly proud."
 
18 months from drawing board to production doesn't sound all that short today, but in the era of slide rules and drafting boards (no computer modeling or even calculators!) it was phenomenal. One of the ways the AMC Engineering Department worked this miracle was to hire David Potter from Kaiser-Frazer. He had previously worked with Continental Engines (owned by Kaiser Industries) on a V-8 intended for the Kaiser-Frazer line, however Kaiser had since purchased Willys-Overland resulting in a change of it's priorities; from making cars, to making the more popular Jeeps. AMC literature reports that "The entire program was under the direction of Meade F. Moore, Vice-President of Automotive Research and Engineering, and through his efforts the project was carried on cooperatively by our Kenosha and Detroit Engineering Departments. Obviously, such a division of both design and development required the utmost in teamwork by F. F. Kishline, Chief Engineer, and his assistants, E. L. Monson and J. S. Voigt in Kenosha, and by R. H. Isbrandt, Chief Design Engineer, and W. S. Berry, Chief Mechanical Engineer, in Detroit." AMC concluded in their announcement of the new engine saying "In short, our objective was an engine with maximum flexibility with regard to future displacement requirements without sacrificing any of the performance features of the power-plant. Economy of operation and manufacturing processes, along with excellent weight and durability characteristics, were all part of our aims. We think that we have succeeded in reaching these objectives, and have produced an engine that is second to none. It is an engine of which we are justly proud."
  
The new for '56 640 lb. Rambler V8 (fully assembled 'long block') was lighter at that time than all other US V8 engines, except for the '55 Chevrolet 'small block'. And when speaking about their intake and exhaust port designs, AMC reported that "the theoretical gas velocity through the valve is lower than that of any automotive engine on the market today." & "Exceptionally close liaison was maintained with our manufacturing personnel during the design and development stages of the engine. As a result, many economies in fabricating and tooling processes were built into the original design and have since been carried through into production.
+
The new for '56 640 lb. Rambler V8 (fully assembled 'long block') was lighter at that time than all other US V8 engines, except for the '55 Chevrolet 'small block'. And when speaking about their intake and exhaust port designs, AMC reported that "the theoretical gas velocity through the valve is lower than that of any automotive engine on the market today" & "Exceptionally close liaison was maintained with our manufacturing personnel during the design and development stages of the engine". As a result, many economies in fabricating and tooling processes were built into the original design and have since been carried through into production.
  
 
Tooling facilities for the V-8 are completely new, and are based on what we call "segmented automation." In this type of manufacturing, each basic section of tooling, although completely automatic, is not fully integrated with other sections. For our purposes, this type of tooling means increased flexibility as each portion of the line can be utilized independently of other operations.
 
Tooling facilities for the V-8 are completely new, and are based on what we call "segmented automation." In this type of manufacturing, each basic section of tooling, although completely automatic, is not fully integrated with other sections. For our purposes, this type of tooling means increased flexibility as each portion of the line can be utilized independently of other operations.
  
Of particular interest is the cylinder-block boring equipment, which has been designed to finish simultaneously blocks of two different bore dimensions. It contains two sets of roughing, finishing, and chamfering tools, and blocks of either bore size can enter the equipment in any mixed sequence. Each station is set to tool one size bore, and when a block enters that station, a probe automatically determines whether or not to cycle the cutting heads."...
+
Of particular interest is the cylinder-block boring equipment, which has been designed to finish simultaneously blocks of two different bore dimensions. It contains two sets of roughing, finishing, and chamfering tools, and blocks of either bore size can enter the equipment in any mixed sequence. Each station is set to tool one size bore, and when a block enters that station, a probe automatically determines whether or not to cycle the cutting heads.
  
 
Wherefore it may be said that not only was the Rambler V8 'state-of-the-art', AMC set a new standard of excellence for the US industry.   
 
Wherefore it may be said that not only was the Rambler V8 'state-of-the-art', AMC set a new standard of excellence for the US industry.   
Line 34: Line 34:
 
-All having the same internally balanced forged steel crankshaft leveraging a 3.25" stroke with 6.375" forged steel connecting rods to the 'divorced skirt' . The '63-up AMC (non-Kaiser Jeep corp.) versions all came equipped with  revised/improved high-flow exhaust manifolds, though AMC did not change their advertised rating of 4bbl 327 from it's former rating of 270hp. From the factory, the main difference were in the bore diameter; The 250 used a 3.50" bore, the 287 a 3.75" bore and the 327 a 4.00" bore. There were three different block castings. It is rumored that early 287 blocks can be bored out to 4.00", but the best advice is to have the block sonic checked '''''before''''' boring. All three of these will easily take an 0.125" over bore, but beyond that is pushing the limit. 327 Rambler V8 engines have been successfully bored and stroked to 418 cid, with no known durability issues.   
 
-All having the same internally balanced forged steel crankshaft leveraging a 3.25" stroke with 6.375" forged steel connecting rods to the 'divorced skirt' . The '63-up AMC (non-Kaiser Jeep corp.) versions all came equipped with  revised/improved high-flow exhaust manifolds, though AMC did not change their advertised rating of 4bbl 327 from it's former rating of 270hp. From the factory, the main difference were in the bore diameter; The 250 used a 3.50" bore, the 287 a 3.75" bore and the 327 a 4.00" bore. There were three different block castings. It is rumored that early 287 blocks can be bored out to 4.00", but the best advice is to have the block sonic checked '''''before''''' boring. All three of these will easily take an 0.125" over bore, but beyond that is pushing the limit. 327 Rambler V8 engines have been successfully bored and stroked to 418 cid, with no known durability issues.   
  
All 250 models use solid lifters, the 287/327s are hydraulic. These engines were also used by Grey Marine for boats in the late '50's and early to mid '60's. All the marine engines used solid lifters regardless of size.
+
All 250 models use solid lifters, the 287/327s are hydraulic. These engines were also used by Grey Marine for boats in the late '50s and early to mid '60s. All the marine engines used solid lifters regardless of size.
  
The AMC Rambler V8 is only recently been labeled 'Gen 1' by newer AMC enthusiasts. This labeling was first used by AMC writer Frank Swygert (editor/forum member 'farna') in an effort to place the engine where it technically "should" be. Tehcnically the labelling is correct -- this is the first generation of AMC V-8s, AMC having been formed in May of 1954 and V-8 engine development starting in 1955. The 66-69 second generation models and 70-91 third generation models are very similar, but having a different block and head casting led to the labelling of Gen-2 and Gen-3. "Series" could have been used instead of "Generation", but "Generation" (shortened to "Gen") seemed to be the most correct description. Previously the first generation AMC V-8 had been (and still is) referred to as either the "Nash V-8" or "Rambler V-8". It was used in both Nash and Rambler branded, as well as AMC branded cars ("Rambler" was dropped from the 65 Marlin and 66 Ambassador, those being branded as AMC models). Technically it was built by the American Motors Corporation, not Nash or Rambler.
+
The AMC Rambler V8 is only recently been labeled 'Gen 1' by newer AMC enthusiasts. This labeling was first used by AMC writer Frank Swygert (aka editor/forum member 'farna') in an effort to place the engine where it technically "should" be. Technically the labeling is correct; this is the first generation of AMC V-8s, AMC having been formed in May of 1954 and V-8 engine development starting in 1955. The 1966-'69 second generation models and 1970-'91 third generation models are very similar, but having a different block and head casting led to the labeling of Gen-2 and Gen-3. "Series" could have been used instead of "Generation", but "Generation" (shortened to "Gen") seemed to be the most correct description. Previously the first generation AMC V-8 had been (and still is) referred to as either the "Nash V-8" or "Rambler V-8". It was used in both Nash and Rambler branded, as well as AMC branded cars ("Rambler" was dropped from the 1965 Marlin and 1966 Ambassador, those being branded as AMC models). Technically it was built by the American Motors Corporation, not Nash or Rambler.
  
'Gen-1', 'Gen-2', etc. labeling ideas were first used by Chevrolet small block V-8 enthusiasts to distinguish the differences among that group of very similar engines. This has apparently led many to believe the terms were "borrowed" from the GM engine family or that a GM enthusiast created the labels. There was a small effort to distnguish between GM and AMC labels -- GM models are typically labeled with all capitals (GEN-1, GEN-2, etc. -- sometimes with no dash), whereas Frank used a single capital (Gen-1 -- and always a dash). The label was used because it is technically correct and fits -- GM's labelling wasn't even considered until others pointed out the similarities, and made the assumption that the labeling was "borrowed".
+
'Gen-1', 'Gen-2', etc. labeling ideas were first used by Chevrolet small block V-8 enthusiasts to distinguish the differences among that group of very similar engines. This has apparently led many to believe the terms were "borrowed" from the GM engine family or that a GM enthusiast created the labels. There was a small effort to distinguish between GM and AMC labels: GM models are typically labeled with all capitals (GEN-1, GEN-2, etc., sometimes with no dash), whereas Frank used a single capital (Gen-1, and always a dash). The label was used because it is technically correct and fits. GM's labeling wasn't even considered until others pointed out the similarities, and made the assumption that the labeling was "borrowed".
  
 
==The Gen 2 V8==
 
==The Gen 2 V8==
By the mid '60's the heavy Gen-1 V-8 was becoming dated. AMC engineers didn't rest once the Gen-1 was introduced though. They had been working on a thoroughly modern light weight V-8 to replace the Gen-1. The Gen-2 engine was introduced in mid year 1966 as a 290cid V8. The only thing it shares with the Gen-1 is the bore spacing. This was done so that existing boring tooling could still be used. Everything else about the Gen-2 was totally unique and new, even the bell housing bolt pattern was changed. These engines are similar to a small block, but have a larger bore spacing similar to a big block. Many people call them a "mid block", but it's just the AMC Gen-2 V-8 -- AMC only made one V-8 design at any given time.
+
By the mid '60s the heavy Gen-1 V-8 was becoming dated. AMC engineers didn't rest once the Gen-1 was introduced though. They had been working on a thoroughly modern light weight V-8 to replace the Gen-1. The Gen-2 engine was introduced in mid year 1966 as a 290cid V8. The only thing it shares with the Gen-1 is the bore spacing. This was done so that existing boring tooling could still be used. Everything else about the Gen-2 was totally unique and new, even the bell housing bolt pattern was changed. These engines are similar to a small block, but have a larger bore spacing similar to a big block. Many people call them a "mid block", but it's just the AMC Gen-2 V-8; AMC only made one V-8 design at any given time.
  
 
The Gen-2 came in three sizes also:
 
The Gen-2 came in three sizes also:
Line 47: Line 47:
 
*1967-'69 343
 
*1967-'69 343
 
*1968-'69 390
 
*1968-'69 390
The 290 and 343 used cast cranks and rods. The 390 was intended for high performance and was made with a forged crank and forged rods. AMC stated that the primary reason forgings were used was to get the engine to market quicker -- they didn't have time to thoroughly test cast components and still introduce the engine when they desired to. As a result, the AMC Gen-2 390 has a tougher bottom end than any similar displacement Mopar, Ford or Chevy. Reworked AMC 390 rods are good to 7000+ rpm, whereas the other makes require replacement performance rods. A lot of work also went into development of the head. AMC heads were some of the best flowing heads on the market at the time. A typical AMC head flowed as good or better than other makes' high performance heads.  
+
The 290 and 343 used cast cranks and rods. The 390 was intended for high performance and was made with a forged crank and forged rods. AMC stated that the primary reason forgings were used was to get the engine to market quicker; they didn't have time to thoroughly test cast components and still introduce the engine when they desired to. As a result, the AMC Gen-2 390 has a tougher bottom end than any similar displacement MOPAR, Ford or Chevy engine. Reworked AMC 390 rods are good to 7000+ rpm, whereas the other makes require replacement performance rods. A lot of work also went into development of the head. AMC heads were some of the best flowing heads on the market at the time. A typical AMC head flowed as good as or better than other makes high performance heads.  
  
 
==The Gen 3 V8==
 
==The Gen 3 V8==

Revision as of 23:04, 17 August 2012

Personal tools
Namespaces
Variants
Actions
Navigation
Categories
Toolbox